电动车论坛

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 2400|回复: 0
打印 上一主题 下一主题

【看到一篇非常详细的文章】聚合物锂电安全使用指南

[复制链接]
跳转到指定楼层
1#
发表于 2011-8-28 05:30:07 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
聚合物锂电安全使用指南
--------------------------------------------------------------------------------
    聚合物锂电有着非常多的优良性能,它正被越来越多地应用到遥控模型当中。但是在使用这种先进的能源装置之前,有一些非常重要的使用要点是需要您时刻注意的。由于聚合物锂电池能量密度大,不正确的使用往往会带来危险,同时也令电池性能得不到好的发挥,甚至令电池过早夭折。为此,5iMX为您准备了这篇短文,请您在使用聚合物锂电池之前务必仔细阅读,这对您安全用好聚合物锂电池具有十分重要的意义。

    为了使您更安全地使用A.K.E聚合物锂电池,请您仔细阅以下文字。

●燃烧:使用非锂电池充用充电器进行充电,有可能引起锂电池损坏、冒烟、发热或燃烧!
    对于3串A.K.E锂电池组,我们建议您使用CoolDazzle S400充电器进行充电;
    对于2串A.K.E锂电池组,我们建议您使用CoolDazzle S200充电器进行充电。

●损坏:过度放电、过度充电或反向充电将立即导致锂电池损坏!

●充电:充电电流不得大于电池容量的1/2;充电截止电压为单颗4.20V±0.05V;CoolDazzle充电器能对对应的锂电池组进行全自动充电,并有指示灯提示充电过程(详情请阅充电器说明书)。

●放电:初次使用,请先使用推荐的充电器进行充电;
    持续使用时,请注意检查电池电压,3串电池组总电压不得低于8.25V;2串电池组总电压不得低于5.5V;单颗电压不得低于2.75V。低于这些额定电压将导致电池气鼓,直至损坏!

●保存:锂电池的自放电率高于镍氢电池,长期保存,容易过度放电,请定期检查电压,使之单颗电压维持在3.6V~3.9V之间;
    保存条件:温度-20℃~+35℃;相对湿度45%~85%。

  A.K.E聚合物锂电池单体采用铝塑膜包装材料,禁止刮擦、碰撞或用尖锐物刺破电池表面。电池极耳并非十分坚固,弯折容易断裂,尤其是正极耳。

  每颗单体在正极耳上冷焊有助焊片,有助于您进行焊接。焊接时应使用<100W的恒温烙铁在极耳上镗锡,温度控制在350℃以下,烙铁头在极耳上坚持停留时间不得超过3秒,焊接次数不得连续超过3次。焊接位置距离极耳根部1cm以上。必须在极耳冷却后才能进行第二次焊接。

  A.K.E聚合物锂电池组已经过良好焊接,禁止拆分或再焊接。聚合物锂电池锂论上不存在流动的电解液,但万一有电解液泄露而接触到皮肤、眼睛或身体其它部位,应立即用清水冲洗并就医。

  禁止使用已经损坏的电池单体(封口封边损坏、外壳破损、闻到电解液的气味、电解液泄露等)。如遇电池发热剧增,请远离电池以免造成不必要的伤害。

锂电池保护电路综述
--------------------------------------------------------------------------------

    锂离子电池保护电路包括过度充电保护、过电流/短路保护和过放电保护,要求过充电保护高精密度、保护IC功耗低、高耐压以及零伏可充电等特性。本文详细介绍了这三种保护电路的原理、新功能和特性要求。

    近年来,PDA、数字相机、手机、可携式音讯设备和蓝芽设备等越来越多的产品采用锂电池作为主要电源。锂电池具有体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,与镍镉、镍氢电池不太一样,锂电池必须考虑充电、放电时的安全性,以防止特性劣化。针对锂电池的过充、过度放电、过电流及短路保护很重要,所以通常都会在电池包内设计保护线路用以保护锂电池。

  由于锂离子电池能量密度高,因此难以确保电池的安全性。在过度充电状态下,电池温度上升后能量将过剩,于是电解液分解而产生气体,因内压上升而产生自燃或破裂的危险;反之,在过度放电状态下,电解液因分解导致电池特性及耐久性劣化,因而降低可充电次数。

  锂离子电池的保护电路就是要确保这样的过度充电及放电状态时的安全性,并防止特性劣化。锂离子电池的保护电路是由保护IC及两颗功率MOSFET所构成,其中保护IC监视电池电压,当有过度充电及放电状态时切换到以外挂的功率MOSFET来保护电池,保护IC的功能有过度充电保护、过度放电保护和过电流/短路保护。

   一、过度充电保护
   过度充电保护IC的原理为:当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状态。此时,保护IC需检测电池电压,当到达4.25V时(假设电池过充点为4.25V)即激活过度充电保护,将功率MOSFET由开转为切断,进而截止充电。

   另外,还必须注意因噪音所产生的过度充电检出误动作,以免判定为过充保护。因此,需要设定延迟时间,并且延迟时间不能短于噪音的持续时间。

  二、过度放电保护
   在过度放电的情况下,电解液因分解而导致电池特性劣化,并造成充电次数的降低。采用锂电池保护IC可以避免过度放电现象产生,实现电池保护功能。

   过度放电保护IC原理:为了防止锂电池的过度放电状态,假设锂电池接上负载,当锂电池电压低于其过度放电电压检测点(假定为2.3V)时将激活过度放电保护,使功率MOSFET由开转变为切断而截止放电,以避免电池过度放电现象产生,并将电池保持在低静态电流的待机模式,此时的电流仅0.1μA。

   当锂电池接上充电器,且此时锂电池电压高于过度放电电压时,过度放电保护功能方可解除。另外,考虑到脉冲放电的情况,过放电检测电路设有延迟时间以避免产生误动作。

  三、过电流及短路电流
   因为不明原因(放电时或正负极遭金属物误触)造成过电流或短路,为确保安全,必须使其立即停止放电。
过电流保护IC原理为,当放电电流过大或短路情况产生时,保护IC将激活过(短路)电流保护,此时过电流的检测是将功率MOSFET的Rds(on) 当成感应阻抗用以监测其电压的下降情形,如果比所定的过电流检测电压还高则停止放电,运算公式为:

V- = I × Rds(on) × 2(V- 为过电流检测电压,I 为放电电流)
假设 V- = 0.2V,Rds(on) = 25mΩ,则保护电流的大小为 I = 4A

   同样地,过电流检测也必须设有延迟时间以防有突发电流流入时产生误动作。

   通常在过电流产生后,若能去除过电流因素(例如马上与负载脱离),将会恢复其正常状态,可以再进行正常的充放电动作。

   四、锂电池保护IC的新功能
   除了上述的锂电池保护IC功能之外,下面这些新的功能同样值得关注:

   1.充电时的过电流保护
   当连接充电器进行充电时突然产生过电流(如充电器损坏),电路立即进行过电流检测,此时Cout将由高转为低,功率MOSFET由开转为切断,实现保护功能。

  V- = I × Rds(on) × 2
  (I 是充电电流;Vdet4,过电流检测电压,Vdet4 为 -0.1V)

   2.过度充电时的锁定模式

   通常保护IC在过度充电保护时将经过一段延迟时间,然后就会将功率MOSFET切断以达到保护的目的,当锂电池电压一直下降到解除点(过度充电滞后电压)时就会恢复,此时又会继续充电→保护→放电→充电→放电。这种状态的安全性问题将无法获得有效解决,锂电池将一直重复着充电→放电→充电→放电的动作,功率MOSFET的栅极将反复地处于高低电压交替状态,这样可能会使MOSFET变热,还会降低电池寿命,因此锁定模式很重要。假如锂电保护电路在检测到过度充电保护时有锁定模式,MOSFET将不会变热,且安全性相对提高很多。

   在过度充电保护之后,只要充电器连接在电池包上,此时将进入过充锁定模式。此时,即使锂电池电压下降也不会产生再充电的情形,将充电器移除并连接负载即可恢复充放电的状态。

   3.减少保护电路组件尺寸

   将过度充电和短路保护用的延迟电容器整合在到保护IC里面,以减少保护电路组件尺寸。

   五、对保护IC性能的要求
   1.过度充电保护的高精密度化

   当锂离子电池有过度充电状态时,为防止因温度上升所导致的内压上升,须截止充电状态。保护IC将检测电池电压,当检测到过度充电时,则过度充电检测的功率MOSFET使之切断而截止充电。此时应注意的是过度充电的检测电压的高精密度化,在电池充电时,使电池充电到饱满的状态是使用者很关心的问题,同时兼顾到安全性问题,因此需要在达到容许电压时截止充电状态。要同时符合这两个条件,必须有高精密度的检测器,目前检测器的精密度为25mV,该精密度将有待于进一步提高。

   2.降低保护IC的耗电

   随着使用时间的增加,已充过电的锂离子电池电压会逐渐降低,最后低到规格标准值以下,此时就需要再度充电。若未充电而继续使用,可能造成由于过度放电而使电池不能继续使用。为防止过度放电,保护IC必须检测电池电压,一旦达到过度放电检测电压以下,就得使放电一方的功率MOSFET切断而截止放电。但此时电池本身仍有自然放电及保护IC的消耗电流存在,因此需要使保护IC消耗的电流降到最低程度。

   3.过电流/短路保护需有低检测电压及高精密度的要求

   因不明原因导致短路时必须立即停止放电。过电流的检测是以功率MOSFET的Rds(on)为感应阻抗,以监视其电压的下降,此时的电压若比过电流检测电压还高时即停止放电。为了使功率MOSFET的Rds(on)在充电电流与放电电流时有效应用,需使该阻抗值尽量低,目前该阻抗约为20mΩ~30mΩ,这样过电流检测电压就可较低。

   4.耐高电压

   电池包与充电器连接时瞬间会有高压产生,因此保护IC应满足耐高压的要求。

   5.低电池功耗

   在保护状态时,其静态耗电流必须要小0.1μA。

   6.零伏可充电

   有些电池在存放的过程中可能因为放太久或不正常的原因导致电压低到0V,故保护IC需要在0V时也可以实现充电。

   六、保护IC发展展望
   如前所述,未来保护IC将进一步提高检测电压的精密度、降低保护IC的耗电流和提高误动作防止功能等,同时充电器连接端子的高耐压也是研发的重点。 在封装方面,目前已由SOT23-6逐渐转向SON6封装,将来还有CSP封装,甚至出现COB产品用以满足现在所强调的轻薄短小要求。

   在功能方面,保护IC不需要整合所有的功能,可根据不同的锂电池材料开发出单一保护IC,如只有过充保护或过放保护功能,这样可以大幅减少成本及尺寸。

   当然,功能组件单晶体化是不变的目标,如目前手机制造商都朝向将保护IC、充电电路以及电源管理IC等周边电路与逻辑IC构成双芯片的芯片组,但目前要使功率MOSFET的开路阻抗降低,难以与其它IC整合,即使以特殊技术制成单芯片,恐怕成本将会过高。因此,保护IC的单晶体化将需一段时间来解决。 

电池内阻的基本知识

       不同类型的电池内阻不同。相同类型的电池,由于内部化学特性的不一致,内阻也不一样。电池的内阻很小,我们一般用毫欧的单位来定义它。内阻是衡量电池性能的一个重要技术指标。正常情况下,内阻小的电池的大电流放电能力强,内阻大的电池放电能力弱。

  在放电电路的原理图上来说,我们可以把电池和内阻拆开考虑,分为一个完全没有内阻的电源串接上一个阻值很小的电阻。此时如果外接的负载轻,那么分配在这个小电阻上的电压就小,反之如果外接很重的负载,那么分配在这个小电阻上的电压就比较大,就会有一部分功率被消耗在这个内阻上(可能转化为发热,或者是一些复杂的逆向电化学反应)。一个可充电电池出厂时的内阻是比较小的,但经过长期使用后,由于电池内部电解液的枯竭,以及电池内部化学物质活性的降低,这个内阻会逐渐增加,直到内阻大到电池内部的电量无法正常释放出来,此时电池也就“寿终正寝”了。绝大部分老化的电池都是因为内阻过大的原因而造成无使用价值,只好报废。因此我们更应该注重的是电池放出的容量而不是充入的容量。

一、内阻不是一个固定的数值

  麻烦的一点是,电池处于不同的电量状态时,它的内阻值不一样;电池处于不同的使用寿命状态下,它的内阻值也不同。从技术的角度出发,我们一般把电池的电阻分为两种状态考虑:充电态内阻和放电态内阻。

  1.充电态内阻指电池完全充满电时的所测量到的电池内阻。

  2.放电态内阻指电池充分放电后(放电到标准的截止电压时)所测量到的电池内阻。

  一般情况下放电态的内阻是不稳定的,测量的结果也比正常值高出许多,而充电态内阻相对比较稳定,测量这个数值具有实际的比较意义。因此在电池的测量过程中,我们都以充电态内阻做为测量的标准。

二、内阻无法用一般的方法进行精确测量

  或许大家会说,高中物理课上有教用简单公式+电阻箱计算电池内阻的方法……但物理课本上教的用电阻箱推算的算法精度太低,只能用于理论的教学,在实际应用上根本无法采用。电池的内阻很小,我们一般用微欧或者毫欧的单位来定义它。在一般的测量场合,我们要求电池的内阻测量精度误差必须控制在正负5%以内。这么小的阻值和这么精确的要求必须用专用仪器来进行测量。

三、目前行业中应用的电池内阻测量方法

  行业应用中,电池内阻的精确测量是通过专用设备来进行的。下面我来说说行业中应用的电池内阻测量方法。目前行业中应用的电池内阻测量方法主要有以下两种:

1.直流放电内阻测量法

  根据物理公式R=U/I,测试设备让电池在短时间内(一般为2~3秒)强制通过一个很大的恒定直流电流(目前一般使用40A~80A的大电流),测量此时电池两端的电压,并按公式计算出当前的电池内阻。
这种测量方法的精确度较高,控制得当的话,测量精度误差可以控制在0.1%以内。

  但此法有明显的不足之处:

  (1)只能测量大容量电池或者蓄电池,小容量电池无法在2~3秒钟内负荷40A~80A的大电流;

  (2)当电池通过大电流时,电池内部的电极会发生极化现象,产生极化内阻。故测量时间必须很短,否则测出的内阻值误差很大;

  (3)大电流通过电池对电池内部的电极有一定损伤。

2.交流压降内阻测量法

  因为电池实际上等效于一个有源电阻,因此我们给电池施加一个固定频率和固定电流(目前一般使用1kHz频率、50mA小电流),然后对其电压进行采样,经过整流、滤波等一系列处理后通过运放电路计算出该电池的内阻值。交流压降内阻测量法的电池测量时间极短,一般在100毫秒左右。

  这种测量方法的精确度也不错,测量精度误差一般在1%~2%之间。

  此法的优缺点:

  (1)使用交流压降内阻测量法可以测量几乎所有的电池,包括小容量电池。笔记本电池电芯的内阻测量一般都用这种办法。

  (2)交流压降测量法的测量精度很可能会受到纹波电流的影响,同时还有谐波电流干扰的可能。这对测量仪器电路中的抗干扰能力是一个考验

  (3)用此法测量,对电池本身不会有太大的损害。

  (4)交流压降测量法的测量精度不如直流放电内阻测量法。

3.测试仪器的元件误差及测试用的电池连接线问题

  无论是上述哪一种方法,都存在一些很容易被我们忽视的问题,那就是测试仪器本身的元件误差和用于连接电池的测试线缆问题。因为要测量的电池的内阻很小,线路的电阻就要考虑进去了。一条短短的从仪器到电池的连接线本身也存在电阻(大约也是微欧级),还有电池与连接线的接触面也存在接触电阻,这些因素必须都在仪器的内部事先做好误差调节。

  所以,正规的电池内阻测试仪一般都配有专用的连接线和电池固定架子。

四、总结

  很多老化的电池其实内部电量还是很多,只是内阻过大放不出电来,实在可惜。但电池的内阻一旦增加后,要想人为降低这个内阻值是难上加难。因此对于已经老化的电池,我们即使想出很多办法来“激活”它,比如大电流冲击,小电流浮充,放冰箱等,但大多无济于事,回天乏术。在了解了上述知识之后,我们基本可以知道,挑选电池要尽可能地挑选内阻较小的电池。另外很重要的一点,电池久置不用,其内阻也会不断增加。建议大家还是要经常使用电池来保持电池内部化学物质的活性。
聚合物锂电池和其它二次电池的性能对比

电池种类 铅酸电池 镉镍电池 氢镍电池 液态锂电 聚合物锂电 聚合物锂电的优势
安全性 好 好 好 较 好 安全性好
重量比能量密度(wh/Kg) 30-40 40-50 50-80 100-150 160-190 重量比能量密度高
体积比能量密度(wh/L) 70-80 110-130 130-200 210-290 280-380 体积比能量密度高
电压(V) 2.0 1.2 1.2 3.7 3.7 电压高
循环寿命(周) 300 300 500 >500 >500 循环寿命长
自放电率(%/月) <5 <10 <30 <5 <5 自放电率低
记忆效应 无 有 无 无 无 无记忆效应
环保特性 有毒 有毒 低毒 低毒 无毒 环保特性好
产品外形 固定 固定 固定 固定 可量身做定 形状可任意变化,适应性好
您需要登录后才可以回帖 登录 | 注册

本版积分规则

小黑屋|手机版|Archiver|电动车论坛 ( 京ICP证041302号 )

GMT+8, 2025-12-8 14:01 , Processed in 0.093601 second(s), 15 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表